M ar 2 00 5 A 3 + 1 perspective on null hypersurfaces and isolated horizons

نویسنده

  • José Luis Jaramillo
چکیده

The isolated horizon formalism recently introduced by Ashtekar et al. aims at providing a quasi-local concept of a black hole in equilibrium in an otherwise possibly dynamical spacetime. In this formalism, a hierarchy of geometrical structures is constructed on a null hypersurface. On the other side, the 3+1 formulation of general relativity provides a powerful setting for studying the spacetime dynamics, in particular gravitational radiation from black hole systems. We revisit the kinematics and dynamics of null hypersurfaces by making use of the 3+1 slicing. In particular, the additional structures induced on null hypersurfaces by the 3+1 slicing of spacetime permit a natural extension to the full spacetime of geometrical quantities defined on the null hypersurface. This 4-dimensional point of view facilitates the link between the null and spatial geometries. We proceed by reformulating the isolated horizon structure in this framework. We also reformulate previous works, such as Damour’s black hole mechanics, and make the link with a previous 3+1 approach of black hole horizon, namely the membrane paradigm. We explicit all geometrical objects in terms of 3+1 quantities, putting a special emphasis on the conformal 3+1 formulation. This is in particular relevant for the initial data problem of black hole spacetimes for numerical relativity. Illustrative examples are provided by considering various slicings of Schwarzschild and Kerr spacetimes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O ct 2 00 5 A 3 + 1 perspective on null hypersurfaces and isolated horizons Eric

The isolated horizon formalism recently introduced by Ashtekar et al. aims at providing a quasi-local concept of a black hole in equilibrium in an otherwise possibly dynamical spacetime. In this formalism, a hierarchy of geometrical structures is constructed on a null hypersurface. On the other side, the 3+1 formulation of general relativity provides a powerful setting for studying the spacetim...

متن کامل

ar X iv : m at h / 04 09 02 9 v 1 [ m at h . A G ] 2 S ep 2 00 4 ACM BUNDLES ON GENERAL HYPERSURFACES IN P 5 OF LOW DEGREE

In this paper we show that on a general hypersurface of degree r = 3, 4, 5, 6 in P 5 a rank 2 vector bundle E splits if and only if h 1 E(n) = h 2 E(n) = 0 for all n ∈ Z. Similar results for r = 1, 2 were obtained in [15], [16] and [1].

متن کامل

Maximum Principle for Totally Umbilical Null Hypersurfaces and Time-dependent Null Horizons

In this paper we modify the maximum principal of (Galloway, 2000) for totally geodesic null hypersurfaces by proving a geometric maximum principle which obeys mean curvature inequalities of a family of totally umbilical null hypersurfaces of a spacetime manifold (Theorem 6). As a physical interpretation we show that, in particular, for a prescribed class of spacetimes the geometric inequality o...

متن کامل

Maximum Principles for Null Hypersurfaces and Null Splitting Theorems

The geometric maximum principle for smooth (spacelike) hypersurfaces, which is a consequence of Alexandrov’s [1] strong maximum for second order quasilinear elliptic operators, is a basic tool in Riemannian and Lorentzian geometry. In [2], extending earlier work of Eschenburg [7], a version of the geometric maximum principle in the Lorentzian setting was obtained for rough (C) spacelike hypersu...

متن کامل

ar X iv : 0 80 5 . 17 63 v 2 [ m at h . C V ] 1 4 Ju l 2 00 9 SINGULAR LEVI - FLAT HYPERSURFACES IN COMPLEX PROJECTIVE SPACE

We study singular real-analytic Levi-flat hypersurfaces in complex projective space. We give necessary and sufficient conditions for such a hypersurface to be a pullback of a real-analytic curve in C via a meromorphic function. We define the rank of a real hypersurface and study the connections between rank, degree, and the type and size of the singularity for Levi-flat hypersurfaces. Finally, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005